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Abstract

This paper presents a generalized formulation for the in-plane modal characteristics of circular annular disks under

combinations of all possible classical boundary conditions. The in-plane free vibration of an elastic and isotropic disk is

studied on the basis of the two-dimensional linear plane stress theory of elasticity. The boundary characteristic orthogonal

polynomials are employed in the Rayleigh–Ritz method to obtain the natural frequencies and associated mode shapes.

Two approaches have been used to represent a clamped boundary condition. The first approach assumes a polynomial

expression that satisfies the clamped conditions, while the second approach uses a disk with free boundary supported on

artificial springs with stiffness tending to infinity. The natural frequencies are tabulated and compared with data available

in the literature. Mode shapes are presented to illustrate the free vibration behavior of the disk.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Circular disks are commonly used in a wide variety of engineering applications including space structures,
electronic components and rotating machinery. While there is a vast amount of information available on the
out-of-plane vibration of plates, the studies reported on the in-plane vibrations of circular annular disks is
relatively scarce [1–4]. Although some studies included in-plane dynamics in the analysis, the focus was
towards the instabilities of out-of-plane modes due to in-plane forces in rotating circular plates [5–7].
However, increasing attention has been given to the in-plane modes in the past few years [8–11]. In-plane
dynamics of disks is closely related to the sound radiations. Sound radiation from the in-plane modes of a disk
has been assumed to be negligible compared to that from the out-of-plane modes. However, in-plane vibration
could generate sufficient sound especially for disks that are relatively thick [9]. For example, the radial
components of railway wheel are important in rolling noise [12].

Predictions of the in-plane natural frequencies of circular disks have been treated in a few studies. Holland
[1] used trigonometric and Bessel functions to study the free in-plane vibration of circular disks with free edges
and presented frequency parameters for different values of Poisson’s ratio. Farag and Pan [2] analyzed the
modal characteristics of in-plane vibrations of a solid disk with clamped outer edge. These studies were carried
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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out for a limited set of boundary conditions. Irie et al. [3] examined the in-plane vibrations in circular and
annular disks using transfer matrix formulation. Natural frequencies were obtained for several radius ratios of
annular disks with combinations of free and clamped conditions at the inner and outer edges but mode shapes
were not presented. Ambati et al. [4] studied in-plane vibrations of solid disks and rings. The natural
frequencies and mode shapes were evaluated for general case of annular configuration as hole size increased
from thin disks to narrow thin rings. Theoretical results were confirmed by experiments.

Exact solutions in terms of Bessel functions can be obtained for limited cases where the disk is isotropic and
subject to classical boundary conditions. Hence, most of the approaches for the solution of vibration problems
are approximate in nature. The Rayleigh–Ritz method has been commonly used to study vibration of
structures due to its reasonable accuracy and versatility. However, the accuracy of this method depends on the
choice of the shape functions that should satisfy at least the geometric boundary conditions. Bhat [13]
suggested a set of boundary characteristic orthogonal polynomials for use in the Rayleigh–Ritz method as
admissible functions for dynamic and static problems of beams or plates with classical boundary conditions.
These functions have some features such as relative ease of generation and integration, diagonal mass matrix
and diagonally dominant stiffness matrix. Rajalingham and Bhat used boundary characteristic orthogonal
polynomials successfully to study the vibration of a variety of structures such as elliptical plates [14,15].

The classical boundary conditions such as simply supported, clamped or free do not precisely represent
the support conditions in practical applications. Using artificial springs at the free boundaries and
permitting the spring constants to take specific values any boundary condition can be achieved. Kim and
Dickinson [16] studied axisymmetrical and non-axisymmetrical vibrations of isotropic and polar orthotropic
annular plates with one or both peripheries elastically restrained against rotation and/or translation using the
Rayleigh–Ritz approach.

The main objective of the present paper is to investigate the in-plane vibration of circular disks including
annular disks, under combinations of classical boundary conditions. The boundary characteristic orthogonal
polynomials [13] are employed as assumed deflection functions in the Rayleigh–Ritz method to obtain the
natural frequencies and associated mode shapes. Orthogonal polynomials are generated for the free boundary
conditions of the disk and artificial springs are used to account for any possible boundary conditions. The
clamped boundary case is also analyzed with orthogonal polynomials that directly satisfy the clamped
boundary conditions. The natural frequencies are tabulated and compared with data available in the
literature. Mode shapes are presented and discussed.

2. Theory

Let us consider the circular disk shown in Fig. 1. The material of the circular disk is assumed to be isotropic
with mass density r, Young’s modulus E and Poisson’s ratio v. The outer radius of the disk is R, the inner
radius is Ri and the thickness of the disk is h. The displacement components of a material point on the disk are
denoted by ur, uy. The expression for the potential energy of the disk in polar coordinates is derived from the
z

ur

uθ

r

�

h

Fig. 1. The natural frequencies of in-plane vibration of a stationary disk.
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constitutive laws and strain–displacement relations. The strain energy can be written in polar coordinate
system (r,y) as

W ¼
1

2

Z R

0

Z 2p

0

ðsr�r þ sy�y þ 2sry�ryÞrdrdy. (1)

Small strains are assumed and Hooke’s law is employed to express stress–strain relationship. For a flat disk,
plane stress conditions may be expressed by the following relations:

sr ¼
E

1� v2
ð�r þ v�yÞ,

sy ¼
E

1� v2
ð�y þ v�rÞ,

sry ¼
E

1þ v
�ry. (2)

Substituting Eq. (2) into the strain energy expression (1) leads to

W ¼
1

2

Z R

0

Z 2p

0

E

1� v2
ð�2r þ 2v�r�y þ �

2
y þ 2ð1� vÞ�2ryÞrdrdy. (3)

For small deformations, the strain–displacement relations are written as

�r ¼
qur

qr
,

�y ¼
1

r
ur þ

quy

qy

� �
,

�ry ¼
1

2

1

r

qur

qy
þ

quy

qr
�

uy

r

� �
. (4)

By substituting strain–displacement relations into Eq. (3), the maximum strain energy is expressed in terms of
the displacement as

W ¼
1

2

Z R

0

Z 2p

0

E

1� v2
qur

qr

� �2
(

þ 2v
ur

r

qur

qr
þ

1

r

quy

qy
qur

qr

� �

þ
ur

r

� �2
þ 2

ur

r2
quy

qy
þ

1

r2
quy

qy

� �2

þ
1

2
ð1� vÞ

1

r

qur

qy
þ

quy

qr
�

uy

r

� �2
)

rdrdy. (5)

The maximum kinetic energy of the disk can be expressed as

T ¼
1

2

Z R

0

Z 2p

0

ðu2
r þ u2

yÞo
2rrdrdy. (6)

For harmonic vibration with time dependence, the free in-plane vibrational response is assumed to have a
sinusoidal variation around the disk, and may be expressed in the form:

urðr; y; tÞ ¼
X1

n

UnðrÞ cosðnyÞe�jot, (7)

uyðr; y; tÞ ¼
X1

n

VnðrÞ sinðnyÞe�jot. (8)

Substituting the assumed solutions, Eqs. (7) and (8), into the energy Eqs. (5) and (6), both equations
are integrated with respect to y from y ¼ 0 to 2p. The integrals of the trigonometric functions are expressed



ARTICLE IN PRESS
S. Bashmal et al. / Journal of Sound and Vibration 322 (2009) 216–226 219
by the relations Z 2p

0

cosðnyÞ sinðn0yÞdy ¼ 0,

Z 2p

0

cosðnyÞ cosðn0yÞdy ¼
0 for nan0;

p for n ¼ n0;

(

Z 2p

0

sinðnyÞ sinðn0yÞdy ¼
0 for nan0;

p for n ¼ n0:

�

The following equations are obtained:

W ¼
p
2

E

1� v2
e�2jot

Z R

0

ðU 0nÞ
2
þ 2vU 0n

Un

r
þ

nVn

r

� �
þ

Un

r
þ

nV n

r

� �2
(

þ
1

2
ð1� vÞ �

nUn

r
þ V 0n �

V n

r

� �2
)

rdrdy, (9)

T ¼
p
2
ro2e�2jot

Z R

0

ðU2
n þ V 2

nÞrdr. (10)

Introducing the non-dimensional parameter x ¼ r/R, the displacement Un(x) and Vn(x) of circular disks can be
expressed as a linear combination of the assumed deflection shapes in form of the boundary characteristic
orthogonal polynomial set ff1;f1; . . . ;fng first proposed by Bhat [13]. A starting function f1ðxÞ is constructed
as the polynomial of the lowest degree that satisfies the geometric boundary conditions. Thus the first
polynomial for the present problem is:

f1ðxÞ ¼ ð1� x2Þ2 clamped

¼ 1 free. (11)

The successive polynomials are generated using the recurrence relation

f2ðxÞ ¼ ðx� b1Þf1ðxÞ,

fkþ1ðxÞ ¼ ðx� bkÞfkðxÞ � ckfk�1ðxÞ; kX2, (12)

where

bk ¼

Z 1

0

x2f2
kðxÞdx

�Z 1

0

xf2
kðxÞdx; kX1,

ck ¼

Z 1

0

x2fkðxÞfk�1ðxÞdx
�Z 1

0

xf2
k�1ðxÞdx; kX2. (13)

The displacements are expressed as

UnðxÞ ¼
X

m

AmnfmðxÞ, (14)

VnðxÞ ¼
X

m

BmnfmðxÞ. (15)
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Substituting Eqs. (14) and (15) into Eqs. (9) and (10) and employing the condition Wmax ¼ Tmax, the
Rayleigh’s quotient can be written as

O2 ¼

R 1
0 ðU

0
nÞ

2
þ 2vU 0n

Un

x
þ

nVn

x

� �
þ

Un

x
þ

nV n

x

� �2

þ 1
2
ð1� vÞ �

nUn

x
þ V 0n �

V n

x

� �2
( )

xdx

R 1
0 ðU

2
n þ V 2

nÞxdx
, (16)

where O2 ¼ ro2R2ð1� v2Þ=E.
Applying the condition of stationarity of O2 with respect to the arbitrary coefficients Amn and Bmn, in

the form

qO2

qAmn

¼ 0,

qO2

qBmn

¼ 0, (17)

result in the eigenvalue problem

ð½K� � O2½M�Þ
Amn

Bmn

( )
¼ f0g. (18)

The stiffness matrix [K] is given by:

½K� ¼
½UU� ½UV�

½VU� ½VV�

" #
,

and

ðUUÞij ¼

Z 1

0

xf0if
0
j þ vðf0ifj þ fif

0
jÞ þ

fifj

x
þ

1� v

2

n2

x
fifj

� �
dx,

ðVV Þij ¼

Z 1

0

n2

x
fifj þ

1� v

2
xf0if

0
j þ

v� 1

2
ðf0ifj þ fif

0
jÞ þ

1� v

2

fifj

x

� �
dx,

ðUV Þij ¼

Z 1

0

n

x
fifj þ vnf0ifj þ

v� 1

2
nfif

0
j þ

1� v

2
n
fifj

x

� �
dx,

ðVUÞij ¼

Z 1

0

n

x
fifj þ vnfif

0
j þ

v� 1

2
nf0ifj þ

1� v

2
n
fifj

x

� �
dx.

The mass matrix [M] is given as:

½M� ¼
mii ½0�

½0� mii

" #
,

where

mii ¼

Z 1

0

fifixdx.

The mass matrix is diagonal because of the orthogonal property of the assumed polynomials. The natural
frequencies can be obtained by solving the eigenvalues problem associated with Eq. (18).

The previous formulation can be used to obtain the natural frequencies of annular disks under several
combinations of boundary conditions. Let us introduce the parameter b ¼ Ri/R which is the ratio between
inner and outer radii of the disk. A polynomial of degree four is used to represent the first polynomial in the
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Table 1

Coefficients of starting functions satisfying geometrical boundary conditions for annular disk (F ¼ free, C ¼ clamped).

Coefficients Boundary conditions

C–C C–F F–C F–F

a1 �b2
�
2b2 þ 2b3 � 3b4 þ b5

ðb� 1Þ3
�
1� 3bþ b2 � 3b3 þ 3b4 � b5

ðb� 1Þ3
1

a2 2ðbþ b2Þ
�
2ð�2b� 2b2 þ 2b4 � b5Þ

ðb� 1Þ3
�
2ð2bþ 2b2 � 2b4 þ b5Þ

ðb� 1Þ3
0

a3 �1� 4b� b2
�
2þ 2bþ 8b2 � 8b3 þ b4 þ b5

ðb� 1Þ3
�
�2� 2b� 8b2 þ 8b3 � b4 � b5

ðb� 1Þ3
0

a4 2ð1þ bÞ
�
2ð�2bþ 2b3 � b4Þ

ðb� 1Þ3
�
2ð2b� 2b3 þ b4Þ

ðb� 1Þ3
0

a5 �1 �1 1 0
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orthogonal set (f1). Then, (f1) can be written in the general form:

f1ðxÞ ¼
X4
i¼0

aiþ1x
i. (19)

The values for the constants ai+1 under different combinations of boundary conditions are listed in Table 1.
Note that for the free condition of the inner radius, when b ¼ 0 (solid disk), the polynomial (f1) will be
identical to Eq. (11).

An alternative way to obtain the natural frequencies for the clamped boundary conditions is to use artificial
springs with admissible functions that satisfy the free boundary conditions. As the stiffness for artificial
springs become very high compared to the disk stiffness, the natural frequencies approach those of clamped
conditions. The advantage of using this method can be evident when two or more elastic components need to
be connected. Rigid joint between two components can be approximated by increasing the stiffness of artificial
springs to approach infinity. Flexible joints can be simulated by assigning the actual values of stiffness for the
joint [16]. This is useful especially when comparing with experimental work because it is difficult to
experimentally simulate the perfect clamped condition at the boundary.

Artificial springs are distributed in the radial and circumferential direction on both inner and outer edges of
the disk. The maximum strain energy stored in the artificial springs is given by

W spring ¼
1

2

Z 2p

0

Kro½urðR; y; tÞ�2Rdyþ
1

2

Z 2p

0

Kri½urðRi; y; tÞ�2Ri dy

¼
1

2

Z 2p

0

Kyo½uyðR; y; tÞ�2Rdyþ
1

2

Z 2p

0

Kyi½uyðRi; y; tÞ�2Ri dy (20)

where K represents the stiffness per unit length, subscripts r and y represent, respectively, radial and
circumferential directions and i and o are the inner and outer radii of the disk. The total strain energy is
obtained by adding Eq. (20) to Eq. (9). Following the same aforementioned procedure and assuming the
polynomial functions that satisfy the free conditions, the eigenvalue problem is solved and the natural
frequencies are obtained. This method can be used to have clamped condition at either boundary.
For example, to have clamped condition at the inner boundary while the outer boundary remain free, the
stiffness in Eq. (20) which refer to inner boundary should have high value while the outer artificial springs have
null stiffness.
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3. Results

A MATLAB program is developed to obtain the solution of the eigenvalues problem. The frequency
parameters computed following the present approach are tabulated for several combinations of boundary
conditions. The results are compared with those available in the literature. Table 2 presents the dimensionless
frequencies for solid disk with free conditions while Table 3 lists the natural frequencies for clamped disks. The
natural frequencies for clamped and free conditions at the inner and outer edges of annular disks are presented
in Tables 4–7.

The results obtained by the present method are in full agreement with those of other studies. The frequency
parameters are the largest for the clamped–clamped disks, and become smaller in that order for the
free–clamped disks, the clamped–free disks and free–free disks. With the increase of the radius ratio, the
parameters monotonically increase except for the free-free disks (Table 8).
Table 2

Non-dimensional natural frequencies O of in-plane vibration for free conditions with v ¼ 0.3.

Mode n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

Ref. [1] Present study Ref. [1] Present study Ref. [1] Present study Ref. [1] Present study

1 1.6176 1.6175 1.3877 1.3928 2.1304 2.1303 2.7740 2.7739

2 3.5291 3.5289 2.5112 2.5146 3.4517 3.4515 4.4008 4.4005

3 4.0474 4.0472 4.5208 4.5561 5.3492 5.3490 6.1396 6.1395

4 5.8861 5.8858 5.2029 5.2056 6.3695 6.3691 7.4633 7.4630

5 6.9113 6.9109 6.7549 6.8256 7.6186 7.6182 8.5007 8.5012

6 7.7980 7.7976 8.2639 8.2640 9.3470 9.3465 10.2350 10.2380

7 9.6594 9.6590 8.7342 8.8625 9.8366 9.8361 11.0551 11.0570

Table 3

Non-dimensional natural frequencies O of in-plane vibration for clamped conditions with v ¼ 0.33.

Mode n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

Ref. [2] Present study Ref. [2] Present study Ref. [2] Present study Ref. [2] Present study

1 1.9441 1.9442 3.0185 3.0185 3.9116 3.9117 4.7021 4.7022

2 3.1126 3.1131 4.0127 4.0128 4.9489 4.9490 5.8985 5.8986

3 4.9104 4.9098 5.7398 5.7400 6.5537 6.5538 7.3648 7.3650

4 5.3570 5.3572 6.7079 6.7081 7.9342 7.9345 8.9816 8.9818

5 6.7763 6.7774 7.6442 7.6444 8.5336 8.5338 9.5296 9.5299

6 8.4938 8.4942 9.4356 9.4360 10.2790 10.2795 11.1087 11.1091

7 8.6458 8.6454 9.9894 9.9898 11.3380 11.3385 12.5940 12.5945

Table 4

Non-dimensional natural frequencies O of in-plane vibration for free–free annular disk with v ¼ 0.3.

Radial ratio (b) n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

Ref. [3] Present study Ref. [3] Present study Ref. [3] Present study Ref. [3] Present study

0.2 1.652 1.651 1.110 1.111 2.071 2.072 2.767 2.766

3.842 3.841 2.403 2.402 3.401 3.400 4.389 4.387

0.4 1.683 1.682 0.721 0.721 1.618 1.619 2.482 2.482

4.044 4.044 2.451 2.450 3.346 3.345 4.227 4.226
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Table 5

Non-dimensional natural frequencies O of in-plane vibration for free–clamped annular disk with v ¼ 0.3.

Radial ratio (b) n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

Ref. [3] Present study Ref. [3] Present study Ref. [3] Present study Ref. [3] Present study

0.2 2.104 2.106 2.553 2.556 3.688 3.693 4.712 4.718

3.303 3.306 3.948 3.953 4.859 4.808 5.894 5.903

0.4 2.517 2.522 2.721 2.734 3.214 3.219 3.955 3.960

3.508 3.514 4.147 4.153 4.998 5.005 5.874 5.882

Table 6

Non-dimensional natural frequencies O of in-plane vibration for clamped–clamped annular disk with v ¼ 0.3.

Radial ratio (b) n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

Ref. [3] Present study Ref. [3] Present study Ref. [3] Present study Ref. [3] Present study

0.2 2.783 2.806 3.378 3.394 4.066 4.084 4.802 4.811

4.060 4.102 4.360 4.382 5.104 5.120 6.003 5.791

0.4 3.429 3.456 4.023 4.046 4.707 4.737 5.287 5.360

5.306 5.350 5.311 5.348 5.619 5.650 6.289 6.313

Table 7

Non-dimensional natural frequencies O of in-plane vibration for clamped–free annular disk with v ¼ 0.3.

Radial ratio (b) n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

Ref. [3] Present study Ref. [3] Present study Ref. [3] Present study Ref. [3] Present study

0.2 0.919 0.940 1.542 1.561 2.157 2.166 2.778 2.779

2.121 2.148 2.605 2.616 3.473 3.476 4.408 4.407

0.4 1.281 1.296 1.965 1.982 2.445 2.463 2.911 2.924

2.691 2.714 2.908 2.924 3.604 3.610 4.492 4.495

Table 8

Non-dimensional natural frequencies O of in-plane vibration for clamped conditions with v ¼ 0.33 (using artificial springs).

Mode n ¼ 1 n ¼ 2 n ¼ 3 n ¼ 4

Ref. [2] Present study Ref. [2] Present study Ref. [2] Present study Ref. [2] Present study

1 1.9441 1.9442 3.0185 3.0185 3.9116 3.9117 4.7021 4.7021

2 3.1126 3.1131 4.0127 4.0128 4.9489 4.9490 5.8985 5.8986

3 4.9104 4.9098 5.7398 5.7400 6.5537 6.5538 7.3648 7.3650

4 5.3570 5.3571 6.7079 6.7081 7.9342 7.9344 8.9816 8.9818

5 6.7763 6.7774 7.6442 7.6444 8.5336 8.5338 9.5296 9.5299

6 8.4938 8.4942 9.4356 9.4360 10.2790 10.2803 11.1087 11.1174

7 8.6458 8.6454 9.9894 9.9898 11.3380 11.3388 12.5940 12.5988
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It is shown in the tables that the frequency parameters increase as m and n increase. It is only in the case of
totally free disk where the minimum frequencies are those with two nodal diameters (n ¼ 2). The reason for
this is that the first frequency parameters in m ¼ 1 group is a rigid body mode with zero value. This value was
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ignored in previous studies. In this study, a value of zero appears in the computations which indicate the
existence of rigid mode. If we include this value in Table 2, the fact that frequency parameters increase with
m and n is correct even for the free conditions.

It may be useful to use artificial springs to see how frequency parameters develop as spring stiffnesses
change from zero (free condition) to infinity (clamped conditions). For a disk clamped at the outer edge
and free at the inner edge (Table 3) as the stiffness of the outer edge is reduced, the frequency parameter for
mode (1, 1) approaches zero which shows the existence of a rigid body mode. Fig. 2 illustrates the influence of
spring stiffness at the outer edge on the frequency parameters of selected modes. In this three-dimensional
figure, different combinations of non-dimensional spring stiffnesses, Kr ¼ KrRð1� v2Þ=Eh and Ky ¼

KyRð1� v2Þ=Eh, are located on the x–y plane and the z-axis is the frequency ratio, Om;n ¼ Om;n=ðOf Þm;n,
where ðOf Þm;n is the frequency parameter corresponding to the disk with free edge given in Table 2. It is
shown that, for lower modes, Kr increases the frequency more effectively than Ky. For higher modes the
effect of Ky becomes more significant, although the influence of spring constant becomes insignificant as
m and n increase.

Radial distribution of the mode shapes are depicted in Fig. 3 for the first three modes for the case of
clamped at the outer edge and free at the inner edge. The center is a nodal point with zero deflection for all
modes except for modes with m ¼ 1. The component of the response at y+p is added to the response at y due
to the change of the sine and cosine functions when the angle is increased by p [2].
4. Conclusions

The characteristics of in-plane vibration for circular disk are investigated under different combinations of
boundary conditions. The Rayleigh–Ritz method is employed to obtain the natural frequencies of the circular
annular disks. The natural frequencies are tabulated and compared with data available in the literature.

The displacements are represented by trigonometric functions in the circumferential direction and by
boundary characteristics orthogonal polynomials in the radial direction in the Rayleigh–Ritz method. The
results by the present approach compare very well with those available in literature.
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